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Reaction of aliphatic ketones with catechol afforded 2,2-dialkylbenzodioxoles. Treatment of these benzo-
dioxoles with allyltrimethylsilane in the presence of titanium tetrachloride led to 4,4-dialkylhepta-1,6-
dienes resulting from a diallylation process. Ring-closing metathesis gave rise to 4,4-dialkylcyclopentenes.

� 2009 Elsevier Ltd. All rights reserved.
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Scheme 1. Allylation of ethylene ketals with allylsilane 1.
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1. Introduction

The allylation of electrophilic reagents has gained in importance
since the development from the seventies of the allylsilane chem-
istry.1 In particular, allylation of acetals is well documented and
homoallyl alkyl ethers can be obtained in this case (Hosomi–Saku-
rai reaction).2 Ethylene ketals afforded homoallyl ether of glycol 2
(Scheme 1). These results suggested that the titanium glycolate
ether is not a sufficient leaving group to allow the substitution
reaction with a second allylsilane 1 reagent. Moreover, compound
2 does not lead to further manipulation due to the inactivity of the
aliphatic ether linkage.

Diallylation occurred only with aryl aldehydes,3 cyclopropylke-
tones4 or bis-dioxanes.5

The use of more reactive catechol ketals (2,2-dialkylbenzodiox-
oles) 3 could increase the leaving group ability of the titanium spe-
cies and therefore enhance its reactivity.

Although the chemistry of 2,2-dialkylbenzodioxoles 3 will be
weakly developed, some results confirm the easy substitution of
the ether linkage. In particular, treatment of 3 with boron tribro-
mide exclusively led to gem-dibromo derivatives in excellent
yields,6 and the dichloroalane afforded reductive opening to give
phenolic ether (Scheme 2).7
ll rights reserved.
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2. Results

We have prepared various benzodioxoles8 to confirm this
hypothesis. With 2,2-dialkyl-1,3-benzodioxoles 3, a clean diallyla-
tion occurred when allyltrimethylsilane (3 equiv) was added to the
complex benzodioxole–TiCl4.9 First, we studied the reaction of ben-
zodioxole 4 derived from the methylisopropylketone (Scheme 3).
Diallylation occurred in good yield (70%) and the structure of 5
was confirmed by a ring-closing metathesis reaction affording
cyclopentene 6.10,11
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Scheme 2. Reactivity of 2,2-dialkylbenzodioxoles 3.
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Scheme 4. Allylsilane substitution of the titanium catecholate.
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Scheme 6. Diallylation of the 3-methylcyclohexanone-derived benzodioxole 11
followed by a ring-closing metathesis.
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Scheme 3. Synthesis of the methylisopropyl ketone-derived benzodioxole 4, its
diallylation followed by a ring-closing metathesis.
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The diallylation of 4 involved the formation of the titanium
complex which underwent an allylsilane substitution. The result-
ing complex titanium dichloride catecholate 7 could be more sta-
ble than the glycolate counterpart. Complex 7 is a stable well-
known compound (CAS number, 13523-46-1) (Scheme 4).12

Under the same experimental conditions, the diallylation of the
cyclohexanone-derived benzodioxole 8 gave the 1,1-diallylcyclo-
hexane 9 in a low yield (20%),13 and the formation of a by-product
10 (25% yield) resulting from a participation reaction (Scheme
5).14,15

However, the yield of diallylcyclohexane 9 was increasing to
55% by the addition of nitromethane (4 M equiv), a higher temper-
ature (�75 �C) and with only 2 equiv of TiCl4 (allylcyclohexanol, 7%
yield, was also isolated). The presence of nitromethane reduced or
prevented the formation of by-products which result from a partic-
ipation reaction.16,17
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Scheme 5. Diallylation of the cyclohexanone-derived benzodioxole 8.
Similar results are observed with benzodioxole 11 derived from
(R)-(+)-3-methylcyclohexanone.18 At low temperatures (�90 �C,
4 h) and in the presence of nitromethane, (1R,3R)-1-allyl-3-meth-
ylcyclohexanol 1319 and (1S,3R)-1-allyl-3-methylcyclohexanol 14
are the major products.20,21 In contrast, at �60 �C, the diallyl deriv-
ative 1222 was obtained in 55% yield (Scheme 6). The ring-closing
metathesis afforded the spiro alkene 15.23

Cyclopentanone-derived benzodioxole 1624 afforded diallyl-
cyclopentane 1725 in a fair yield (Scheme 7).

The diallylation to give 1926 can be performed in the good yield
of 65% even with the strained norcamphor-derived benzodioxole
18.27 The corresponding spiro tricyclic hydrocarbon 2028 is easily
obtained by ring-closing metathesis (Scheme 8).
3. Conclusion

To the best of our knowledge, the titanium tetrachloride-medi-
ated diallylation with allylsilane of ketone-derived benzodioxole
constitutes the only one-step method. Gratefully, metathesis easily
gave rise to 4,4-dialkylcyclopentenes.
Scheme 7. Diallylation of the cyclopentanone-derived benzodioxole 16.
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ring-closing metathesis.
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